Abstract
In this article, a novel disturbance observer-based adaptive neural control (ANC) scheme is proposed for full-state-constrained pure-feedback nonlinear systems using a new system transformation method. A nonlinear transformation function in a uniformed design framework is constructed to convert the original states with constrained bounds into the ones without any constraints. By combining an auxiliary first-order filter, an augmented nonlinear system without any state constraint is derived to circumvent the difficulty of the controller design caused by the nonaffine input signal. Based on the augmented nonlinear system, a nonlinear disturbance observer (NDO) is designed to enhance the disturbance rejection ability. Subsequently, the NDO-based ANC scheme is presented by combining the second-order filters with backstepping. The proposed scheme confines all states within the predefined bounds, eliminates the condition on both the known sign and bounds of control gains, improves the robustness of the closed-loop system, and alleviates the computational burden. Two simulation examples are performed to show the validity of the presented scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.