Abstract

Background: As the elderly population continues to grow, so does the demand for new and innovative solutions to tackle age-related chronic diseases and disabilities. Virtual Reality (VR) has been explored as a novel therapeutic tool for numerous health-related applications. Although findings frequently favors VR, methodological shortcomings prevent clinical recommendations. Moreover, the term “VR” is frequently used ambiguously to describe e.g., video games; the distinction remains vague between immersive VR (IVR) systems and non-immersive VR (NVR). With no distinct demarcation, results of outcome measures are often pooled in meta-analyses, without accounting for the immersiveness of the system.Objective: This systematic review focused on virtual reality-based rehabilitation of older adults (+60) in motor rehabilitation programs. The review aims to retrospectively classify previous studies according to the level of immersion, in order to get an overview of the ambiguity-phenomenon, and to utilize meta-analyses and subgroup analyses to evaluate the comparative efficacy of system immersion in VR-based rehabilitation.Methods: Following PRISMA guidelines, we conducted a systematic search for randomized controlled trials, describing virtual rehabilitation or video games interventions for older adults (+60). Main outcomes were pain, motivation, mobility, balance, and adverse events.Results: We identified 15 studies which included 743 patients. Only three studies utilized IVR. The rest used various NVR-equipment ranging from commercial products (e.g., Nintendo Wii), to bespoke systems that combine tracking devices, software, and displays. A random effects meta-analysis of 10 studies analyzed outcome measures of mobility, balance, and pain. Protocols and dosage varied widely, but outcome results were in favor of immersive and non-immersive interventions, however, dropout rates and adverse events were mostly in favor of the control.Conclusions: We initialize a call-for-action, to distinguish between types of VR-technology and propose a taxonomy of virtual rehabilitation systems based on our findings. Most interventions use NVR-systems, which have demonstrably lower cybersickness-symptoms than IVR-systems. Therefore, adverse events may be under-reported in RCT-studies. An increased demand for IVR-systems highlight this challenge. Care should be given, when applying the results of existing NVR tools to new IVR-technologies. Future studies should provide more detail about their interventions, and future reviews should differentiate between NVR and IVR.

Highlights

  • IntroductionThe diagnosis and treatment of these chronic diseases, which often require special care or hospitalizations, leads to rising expenditures for the healthcare systems around the world (United Nations, Department of Economic and Social Affairs)

  • By 2050 the world population is projected to reach 9.7 billion people, with older adults ≥65 accounting for approximately one fifth (1.7b) (United Nations, Department of Economic and Social Affairs)

  • We argue that a distinction has to be made between commercial and bespoke systems, since low availability and accessibility of certain Virtual Reality (VR)-systems challenges the reproducibility of findings or clinical applications

Read more

Summary

Introduction

The diagnosis and treatment of these chronic diseases, which often require special care or hospitalizations, leads to rising expenditures for the healthcare systems around the world (United Nations, Department of Economic and Social Affairs). In the context of rehabilitative interventions, outcomes, and recovery often depend on the patient’s motivation, leading programs to suffer from low adherence as a consequence. This has been identified as a challenge within different fields of rehabilitation, including pulmonary rehabilitation (Bourbeau and Bartlett, 2008; Salinas et al, 2011), acute stroke (Maclean et al, 2000), and diabetes (Rizzo et al, 2011). Results of outcome measures are often pooled in meta-analyses, without accounting for the immersiveness of the system

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.