Abstract

Abstract Introduction: Cardiomyocytes are more sensitive to stimulatory electrical fields when the latter are applied longitudinally to the cell major axis. In the whole heart, cells have different spatial orientations, which may limit the effectiveness of conventional electrical defibrillation (i.e., shock delivery in a single direction). This article describes the constructive aspects of a portable system for rapidly-switching, multidirectional stimulus delivery, composed of an electrical defibrillator and multielectrode-bearing paddles for direct cardiac defibrillation. Methods: The defibrillator delivers monophasic, truncated monoexponential waveforms with energy up to 7.3 J. Upon selection of the defibrillation modality (unidirectional or multidirectional), shock delivery is triggered through 1 or 3 outputs. In the latter case, triggering is sequentially switched to the outputs, without interval or temporal overlap. Each paddle contains 3 electrodes that define shock pathways spaced by 60°. The system was tested in vivo for reversal of experimentally-induced ventricular fibrillation in healthy swine, using 30- and 20-ms long shocks (N= 4 in each group). Results: The defibrillator delivers identical stimulus waveforms through all outputs in both stimulation modalities. In all animals, successful defibrillation required lower shock energy when 20 ms-long stimuli were applied in 3 directions, compared to a single direction. However, performance was poorer with multidirectional defibrillation for 30 ms-long shocks. Conclusion: The delivery of identical shock waveforms allowed confirmation that multidirectional defibrillation can promote restoration of sinus rhythm with lower shock energy, which may reduce myocardial electrical damage during defibrillation. Nevertheless, increase in shock duration greatly impairs the effectiveness of this defibrillation modality.

Highlights

  • Cardiomyocytes are more sensitive to stimulatory electrical fields when the latter are applied longitudinally to the cell major axis

  • Cardiac arrest caused by ventricular fibrillation (VF) is a leading cause of sudden death, which is estimated to account for 15-20% of all deaths (Hayashi et al, 2015)

  • Using randomly-oriented isolated ventricular myocytes as an experimental model for heterogeneous cell spatial orientation, Fonseca et al (2013) showed that rapidly switching stimuli among 3 directions was able to more than double the percentage of cells excited by near-threshold stimulus amplitude

Read more

Summary

Introduction

Cardiomyocytes are more sensitive to stimulatory electrical fields when the latter are applied longitudinally to the cell major axis. Cells have different spatial orientations, which may limit the effectiveness of conventional electrical defibrillation (i.e., shock delivery in a single direction). This article describes the constructive aspects of a portable system for rapidly-switching, multidirectional stimulus delivery, composed of an electrical defibrillator and multielectrode-bearing paddles for direct cardiac defibrillation. Conclusion: The delivery of identical shock waveforms allowed confirmation that multidirectional defibrillation can promote restoration of sinus rhythm with lower shock energy, which may reduce myocardial electrical damage during defibrillation. Optimizing the direction of stimulation might decrease the field intensity required for effective stimulation, since, for field application parallel to the cell major axis, the threshold intensity is only 50% of that when the field is applied in the transversal direction (Bassani et al, 2006; Oliveira et al, 2008). Using randomly-oriented isolated ventricular myocytes as an experimental model for heterogeneous cell spatial orientation, Fonseca et al (2013) showed that rapidly switching stimuli among 3 directions was able to more than double the percentage of cells excited by near-threshold stimulus amplitude

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.