Abstract
An intuitive and generalisable approach to spatial-temporal feature extraction for high-density (HD) functional Near-Infrared Spectroscopy (fNIRS) brain-computer interface (BCI) is proposed, demonstrated here using Frequency-Domain (FD) fNIRS for motor-task classification. Enabled by the HD probe design, layered topographical maps of Oxy/deOxy Haemoglobin changes are used to train a 3D convolutional neural network (CNN), enabling simultaneous extraction of spatial and temporal features. The proposed spatial-temporal CNN is shown to effectively exploit the spatial relationships in HD fNIRS measurements to improve the classification of the functional haemodynamic response, achieving an average F1 score of 0.69 across seven subjects in a mixed subjects training scheme, and improving subject-independent classification as compared to a standard temporal CNN.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE open journal of engineering in medicine and biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.