Abstract
The protein alpha-synuclein, implicated in Parkinson's disease, was studied by combining nano-electrospray ionization (N-ESI) mass spectrometry and ion mobility. It was found that both the charge-state distribution in the mass spectra and the average protein shape deduced from ion mobility data, depend on the pH of the spray solution. Negative-ion N-ESI of pH 7 solutions yielded a broad charge-state distribution from -6 to -16, centered at -11, and ion mobility data consistent with extended protein structures. Data obtained for pH 2.5 solutions, on the other hand, showed a narrow charge-state distribution from -6 to -11, centered at -8, and ion mobilities in agreement with compact alpha-synuclein structures. The data indicated that there are two distinct families of structures: one consisting of relatively compact proteins with eight or less negative charges and one consisting of relatively extended structures with nine or more charges. The average cross section of a-synuclein at pH 2.5 is 33% smaller than for the extended protein sprayed from pH 7 solution. Significant dimer formation was observed when sprayed from pH 7 solution but no dimers were observed from the low pH solution. A plausible mechanism for aggregate formation in solution is proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the American Society for Mass Spectrometry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.