Abstract

There are always some difficulties in storage reliability evaluation of high-reliability, long-life, and high-value products, such as the test sample being small, degradation speed being slow, and failure data being inadequate. Temperature–humidity step-stress accelerated degradation test (THSS-ADT) is an effective method to evaluate the reliability of this type of products, but the test data processing is an extremely complex work. The motivation of this paper is to provide a clear, effective, and convenient method to evaluate the reliability on the basis of THSS-ADT data. Considering the stochastic volatility in degradation process, Wiener process is used to modeling the accelerated degradation process. The methods to estimate the parameters of Peck accelerated model and degradation model are discussed under temperature–humidity step-stress. As ordinary optimization algorithms (such as Newton Iteration Method and impelling function method) find it difficult to get the solutions, particle swarm optimization (PSO) method is used to solve the problem of maximum-likelihood estimation. Finally, the proposed methods are demonstrated for two examples, in which one is a numerical simulation, and another is an engineering practice of a microwave power amplifier.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.