Abstract

Acute myeloid leukemia (AML) is mostly driven by oncogenic transcription factors, which have been classically viewed as intractable targets using small-molecule inhibitor approaches. Here we demonstrate that AML driven by repressive transcription factors, including AML1-ETO (encoded by the fusion oncogene RUNX1-RUNX1T1) and PML-RARα fusion oncoproteins (encoded by PML-RARA) are extremely sensitive to poly (ADP-ribose) polymerase (PARP) inhibition, in part owing to their suppressed expression of key homologous recombination (HR)-associated genes and their compromised DNA-damage response (DDR). In contrast, leukemia driven by mixed-lineage leukemia (MLL, encoded by KMT2A) fusions with dominant transactivation ability is proficient in DDR and insensitive to PARP inhibition. Intriguingly, genetic or pharmacological inhibition of an MLL downstream target, HOXA9, which activates expression of various HR-associated genes, impairs DDR and sensitizes MLL leukemia to PARP inhibitors (PARPis). Conversely, HOXA9 overexpression confers PARPi resistance to AML1-ETO and PML-RARα transformed cells. Together, these studies describe a potential utility of PARPi-induced synthetic lethality for leukemia treatment and reveal a novel molecular mechanism governing PARPi sensitivity in AML.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.