Abstract

Simple parameter-based models are typically unable to function in all situations due to the rapidly tightening margins for error in the use of contemporary estimation techniques. The development of data-driven models as a result has made the availability of trustworthy battery data essential. The generation of such data from battery systems necessitates prolonged cycling tests that can last for months, which makes data collection challenging. In this article, a combination of approaches is presented that uses measured operational data from battery packs to generate synthetic data utilizing Markov chains and neural networks in order to ultimately estimate the capacity fade based on operational drive cycle data. The experimental data used for this study are generated using scaled operational cycles with multiple charge/discharge pulses applied repetitively on a commercially available battery pack. The synthetically generated data have the flexibility of matching user-imposed conditions, and have potential for a variety of applications in the analysis and safety of commercial battery systems. Finally, capacity estimation results present the outcome of a comprehensive study into capacity fade estimation in battery packs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.