Abstract
Synthetic aperture radar (SAR) image simulators based on computer-aided drawing models play an important role in SAR applications, such as automatic target recognition and image interpretation. However, the accuracy of such simulators is due to geometric error and simplification in the electromagnetic calculation. In this letter, an end-to-end model was developed that could directly synthesize the desired images from the known image database. The model was based on generative adversarial nets (GANs), and its feasibility was validated by comparisons with real images and ray-tracing results. As a further step, the samples were synthesized at angles outside of the data set. However, the training process of GAN models was difficult, especially for SAR images which are usually affected by noise interference. The major failure modes were analyzed in experiments, and a clutter normalization method was proposed to ameliorate them. The results showed that the method improved the speed of convergence up to 10 times. The quality of the synthesized images was also improved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.