Abstract
The progress in developing a dynamic analysis solver has different aspects of improvement in the sense of simulating the behavior of the parts. Among them, dynamics in flexible body and large deformable body have been an issue in recent decades. A modal coordinate formulation has been developed and used for analyzing the flexible body dynamics with a commercial dynamic solver, like in ADAMS. Flexible body dynamics using modal coordinates are reliable when the system’s deflection is relatively small, and generally its accuracy depends on how many relevant modes are used for the system. Conversely, to simulate the behavior of the large deflected body, absolute nodal coordinate formulation is derived and developed. The theory presents the mixed equations of motion, which consider both the absolute nodal coordinates and absolute cartesian orientation coordinates to simulate the large deflection. Its reliability is proved by many researches and experimental data. In this study, a dynamic solver which can handle the flexible bodies is developed. Three kinds of bodies, rigid, flexible and large deformable body, can be simulated. Its validity is verified by comparison with a commercial analysis program. For further studies, the constraints and force elements between different coordinates will be developed. Solving efficiency would be another major concern to be improved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.