Abstract

Capturing the frequency-dependent sound relaxational absorption in excitable gases has the potential of wide applications in gas detection; however, it is still challenging to accurately measure it in real time. With the aid of the relationship between effective compression coefficient and acoustic relaxation process, an approach to synthesize the frequency-dependent sound relaxational absorption is proposed by using the sound speeds at three frequencies under a single pressure that are far easier to be precisely measured in real time. The proposed approach includes three steps. Firstly, the relaxation strength is calculated from the low-frequency and the high-frequency sound speeds measured at two selected frequencies; secondly, the adiabatic constant pressure relaxation time is calculated from the sound speed measured at the third frequency within the range where the sound relaxational absorption is significant; finally, the frequency-dependent sound relaxational absorption and sound speed dispersion are synthesized by the real and imaginary parts of the normalized high-frequency effective adiabatic coefficient. For gases containing CH4, CO2, CL2 and N2, the synthesized results are consistent with the experimental data. Our approach provides a real-time acoustic solution with higher accuracy and implementation convenience for gas detecting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.