Abstract

Redundancy concepts are an integral part of the design of space systems. Deciding when to activate which redundancy and which component should be replaced can be a difficult task. In this paper, a model of nondeterministic dynamic fault trees is presented. It is shown how appropriate recovery strategies can be synthesized from them. This is achieved by transforming a nondeterministic dynamic fault tree into a Markov automaton. From the optimized scheduler of this Markov automaton, an optimal recovery strategy can then be derived. The model of recovery automata is also introduced to represent these strategies. Finally, how these synthesized strategies can help improve overall system reliability is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.