Abstract

In this manuscript we report the synthesis and X-ray characterization of four Zn(II) complexes and three Cd(II) complexes with an asymmetrical hydrazone–pyridine based ligand {HL = 2-acetyl-pyridyl-isonicotinoylhydrazone (HAPIH)}; i.e. {[Zn(HL)2](NO3)2·H2O} (1), [Zn(HL)Br2] (2), [Zn(HL)I2] (3), [Zn(HL)(NCS)2] (4), [Cd(L)2] (5), {[Cd(HL)Br2]·CH3OH} (6) and {[Cd(HL)I2]·2CH3OH} (7). The Schiff base acts as a tridentate N2O-donor ligand through the oxygen, the imine and pyridine nitrogen atoms in all the complexes. In most complexes, the ligand is observed to coordinate as a zwitterion since the proton in the hydrazine group (N–NH–CO) shifted to the uncoordinated pyridine ring, except in 7. On the other hand, in 5 the ligand acts as a negatively charged species and is bound to the cadmium center in the enolic form (N–NC–O−). In complexes 2–4, 6 and 7, the coordination geometry around each metal center is distorted trigonal bipyramidal, with the coordination sphere of the metal completed by two halide or NCS anions. On the other hand, in homoleptic complexes 1 and 5, the metal, chelated by two tridentate Schiff base ligands, exhibits an octahedral geometry. In the crystal packing of all compounds, the pyridine rings favour π–π interactions among the symmetry related complexes. The noncovalent interactions among the complexes have been analyzed using Hirshfeld surface analysis and DFT calculations using Grimme's D3 dispersion correction to properly describe the π–π interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.