Abstract

Quantum-sized TiO2 had been prepared by using Ti(n-OC4H9)4 as the raw material via a microwave-assisted sol-gel method. The influence of different processing temperature and time on the size of TiO2 was researched. The TiO2 was characterized by transmission electron microscopy (TEM) and X-ray diffraction analysis (XRD). The prepared TiO2 presents anatase phase structure by TEM and XRD. The photocatalytic activity of TiO2 was evaluated by the degradation rate of methyl orange in aqueous solution. The particle size of TiO2 was about 9.10 nm when the processing temperature was 160°C and the processing time was 90 min (160°C-90min), and the photocatalytic performance was the best under this size. When the initial concentration of methyl orange was 10 mg/L and the amount of quantum-sized TiO2 was 0.6 g/L, the degradation rate of methyl orange under ultraviolet and solar irradiation at room temperature in 60 min were 40% and 86%, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.