Abstract

A series of novel azacyclophanes consisting of 2,7-anthrylene and phenylene units were designed and synthesized by the Buchwald-Hartwig coupling reaction to investigate their unique electronic properties in multiple oxidized states. Cyclic voltammetry showed that the p-phenylene derivative exhibited three reversible oxidation waves, whereas the o- and m-phenylene derivatives showed two quasi-reversible oxidation waves due to the complicated intramolecular interaction between the oxidized units and neutral units. Moreover, the absorption spectra of the p-phenylene derivative in different oxidation states showed absorption bands at 865 and 1025 nm, which were attributed to intramolecular charge-transfer interactions. The photophysical and electrochemical properties of the p-phenylene analog were also compared with those of the o- and m-phenylene derivatives based on theoretical calculations for further evaluation of the intramolecular electronic interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.