Abstract

In this report, we present the systematic preparation of active and durable non-precious metal catalysts (NPMCs) for the oxygen reduction reaction in polymer electrolyte fuel cells (PEFCs) based on the heat treatment of polyaniline/metal/carbon precursors. Variation of the synthesis steps, heat-treatment temperature, metal loading, and the metal type in the synthesis leads to markedly different catalyst activity, speciation, and morphology. Microscopy studies demonstrate notable differences in the carbon structure as a function of these variables. Balancing the need to increase the catalyst’s degree of graphitization through heat treatment versus the excessive loss of surface area that occurs at higher temperatures is a key to preparing an active catalyst. XPS and XAFS spectra are consistent with the presence of Me–Nx structures in both the Co and Fe versions of the catalyst, which are often proposed to be active sites. The average speciation and coordination environment of nitrogen and metal, however, depends greatly on the choice of Co or Fe. Taken together, the data indicate that better control of the metal-catalyzed transformations of the polymer into new graphitized carbon forms in the heat-treatment step will allow for even further improvement of this class of catalysts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.