Abstract

Local excess of nitric oxide (NO) has been implicated in β-cell damage, thus, a possible approach to the treatment of autoimmune IDDM is the selective inhibition of inducible nitric oxide synthase (iNOS). A series of variously substituted hexahydropyridazine-1-carbothioamides, -carbothioimidic acid esters and -carboximidamides was synthesized and dose-dependently evaluated as potential inhibitors of iNOS. The screening of the title compounds was performed with insulin-producing RIN-5AH cells and a combination of IL1-1β and IFN-γ as inducers of cellular NO production. The structure–activity analysis revealed that the variation of substituents in the position 1 of the hexahydropyridazine strongly influences the inhibitory activity to iNOS as well as being critical for RIN cell survival. Among the compounds tested, the hexahydropyridazine-1-carbothioamides showed particularly significant inhibitory effects. However, for an efficient iNOS inhibition substitution at the nitrogen of the 1-carbothioamide group is important. Thus, the introduction of aliphatic chains such as propyl or butyl and of cyclic moieties such as cyclohexyl, 3-methoxyphenyl, and 4-methoxyphenyl (IC50: 0.5–2.1 mM), respectively, provided compounds with similar inhibitory activity to aminoguanidine (IC50: 0.3 mM), a common standard substance used for the selective inhibition of iNOS. However, the 1-carboximidamides, which represent more structurally related semicyclic derivatives of aminoguanidine, caused only incomplete iNOS inhibition. The hexahydropyridazine-1-carbothioimidic acid esters caused dose- and substituent-dependent damage of RIN-5AH cells. The toxicity of the synthesized compounds increased markedly if aliphatic substituents at the exocyclic N atom(s) were replaced by variously substituted aromatic rings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.