Abstract
Nanostructured ferrite spinels AFe2O4 (A = Co, Ni, Zn) were successfully synthesized via a co-precipitation method using oxalate salt as a precursor in an anionic surfactant system in combination with a simple calcination process. High crystallinity samples of nanoparticle spinels in a grain size range of 15–100 nm were obtained by varying the calcination temperature (300–700 °C) and time (1–5 h). Their pore sizes were controlled in a range of 3 nm up to a hundred nm by tailoring the calcination conditions. Raising the calcination temperature was found to decrease the Brunauer–Emmett–Teller (BET) surface area, and broaden the pore structure due to enhanced crystal growth and agglomeration of interparticles of spinels. Transmission electron microscopy (TEM) images of ferrite spinels calcined at 300 °C showed mesoporous structures with narrow pore size distribution, and the maximum BET surface area of CoFe2O4, NiFe2O4 and ZnFe2O4 were found at 201 (Co), 315 (Ni), and 273 (Zn) m2 g−1, respectively. The magnetic hysteresis loops of the ferrite spinels at room temperature demonstrated ferromagnetism in CoFe2O4, superparamagnetism–ferromagnetism in NiFe2O4, and paramagnetism in ZnFe2O4. The highest saturation magnetization (Ms), remanent magnetization (Mr), and coercivity (Hc) were obtained from high crystallinity spinels calcined at 700 °C. Nanostructured AFe2O4 with high surface area and mesoporosity promises potentials as novel magnetic catalysts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.