Abstract
Single-phase three-dimensional vanadium oxide (V4O9) was synthesized by reduction of V2O5 using a gas stream of ammonia/argon (NH3/Ar). The as-synthesized oxide, prepared by this simple gas reduction method was subsequently electrochemically transformed into a disordered rock salt type-"Li3.7V4O9" phase while cycling over the voltage window 3.5 to 1.8V versus Li. The Li-deficient phase delivers an initial reversible capacity of ∼260mAhg-1 at an average voltage of 2.5V vs. Li+/Li0. Further cycling to 50 cycles yields a steady 225mAhg-1. Ex situ X-ray diffraction studies confirmed that (de) intercalation phenomena follows a solid-solution electrochemical reaction mechanism. As demonstrated, the reversibility and capacity utilization of this V4O9 is found to be superior to battery grade, micron-sized V2O5 cathodes in lithium cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.