Abstract

New water soluble Co(II) 1, Ni(II) 2 and Cu(II) 3 complexes of 4,15-bis(2-hydroxyethyl)-2,4,6,13,15,17-hexaazatricyclodocosane Co(II) were synthesized and characterized by various techniques, viz. elemental analysis, conductivity measurements, infrared, electronic, ESI-MS, 1H and 13C NMR spectroscopy. Molar conductance measurements in aqueous solution showed that complexes 1, 2 and 3 are ionic in nature. On the basis of spectroscopic data, a square planar geometry was assigned to the complexes involving four N-atoms of the two cyclohexane moieties. Interaction studies of 1 and 3 with CT-DNA were carried using UV/Visible absorption spectroscopy, fluorescence spectrophotometry, cyclic voltammetry and viscosity measurements. Absorption spectral traces reveal 27.7 and 23.3% hyperchromism for complexes 1 and 3, respectively indicative of strong binding to CT-DNA. These results were authenticated by fluorescence quenching experiments and viscosity measurements. The intrinsic binding constants K b of 1 and 3 are 2.94 × 104 and 2.71 × 104 M−1, respectively. Early transition metals show preference for O6 position while later ones copper and cobalt prefer N7 position of DNA base guanine. To validate this hypothesis, interaction studies of copper (II) and cobalt (II) complexes were carried out with 5′GMP, which revealed electrostatic interactions are more favored along with hydrogen bonding than coordinate covalent interaction to N7 position of guanine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.