Abstract

This review highlights Carbon Quantum Dots (CQDs) as promising photocatalysts for breaking down organic pollutants, particularly in advancing CQDs-based systems for degrading organic dyes. CQDs, used alone or combined with semiconductors, enhance performance. In scenarios with narrow bandgaps, CQDs assist in separating charges, whereas in wider bandgaps, they enable visible/NIR activity through up-conversion luminescence. When integrated into Z-scheme heterostructures, CQDs reduce recombination by facilitating electron transfer. Synthesis methods—both top-down and bottom-up—are explored along with crucial physicochemical properties. Furthermore, modifying CQDs through doping and integrating functional groups on their surface adjusts their characteristics, promising more effective CQDs-modified photocatalysts in future research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.