Abstract

New 1,2,3-triazolostilbenes were synthesized and photochemically transformed to substituted naphthotriazoles as electrocyclization products in high isolated yields for studying the acetyl- and butyrylcholinesterase inhibitory and anti-inflammatory activity. The best experimental results showed the naphthotriazole photoproducts providing interesting observation on cholinesterase inhibition associated with the inhibition of TNFα cytokine production. The geometries of synthesized triazolostilbenes were computationally examined using Density Functional Theory (DFT), followed by time-dependent DFT calculations to obtain insight into electronic properties observed by UV–Vis spectroscopy. The complexes between selected compounds with the active site of AChE are assessed by docking. A quantum mechanical cluster approach was utilized to optimize their structures, thus providing insight into the stabilizing interactions between the potential inhibitor and the active site.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.