Abstract

Alumina (Al2O3) coated ZnO core-shell structures were synthesized by a novel, fast, and facile route utilizing microwave (MW) irradiation to control photocatalytic property of ZnO. The phase analysis and the core–shell structure development were corroborated by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), X-ray fluorescence (XRF), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray (EDX) analysis and Fourier transform infrared spectroscopy (FT-IR). The XPS results affirmed that elements on the coated surface were Al and O. Zeta potential analysis predicted the presence of Al2O3 layer on ZnO due to almost similar zeta potential curve for pure Al2O3 and Al2O3 coated ZnO nanoparticles. There was no significant change in band gap energy of ZnO after amorphous Al2O3 coating as obtained from derived data of the reflectance spectra but gradual decreasing of reflectance in the visible range, measured by UV–vis spectroscopy, of the prepared core-shell nanoparticle may be due to the coating of amorphous Al2O3 on ZnO. The photocatalytic efficiency of ZnO was reduced after amorphous Al2O3 layer as confirmed by the photodegradation of methylene blue under UV irradiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.