Abstract
A series of mixing of complexes [EuxTb1-x.L3] was synthesized using the solvent-assisted grinding method. The chemical composition of complexes is determined by elemental analysis. Energy dispersive X-ray analysis (EDAX) was applied to ascertain the purity of complexes. The morphology and nature of the synthesized complex were investigated using scanning electron microscopy (SEM) and X-ray powder diffraction (XRD). The photoluminescent excitation (PL) and photoluminescent emission (PLE) spectra were examined as a function of the concentration of Eu3+ and Tb3+ ions to predict the tuning of color in both state solution and solid. Thermogravimetric data analysis reveals that these complexes have good thermal stability, supporting their application in producing organic light-emitting diodes. The radiative rate (Arad), quantum efficiency (φ), and JO intensity parameters (Ωλ) were calculated. Studying these complexes' Urbach energy, optical band gap, and refractive index suggests their potential application in semiconductor and solar cell devices. The Commission International de I'Eclairage 1931 (CIE) coordinates (x,y) can be obtained from the emission spectra of complexes, indicating that color can be adjusted to nearly white light (x = 0.3201,y = 0.3319) by changing the Tb3+ and Eu3+ ion concentrations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.