Abstract
Applications of poly(l-lactide) (PLA) and poly(d,l-lactide-co-glycolide) (PLGA) microspheres are widely used in the biomedical and pharmaceutical fields. The effects of PLA/PLGA on microsphere properties when using conventional particulate preparation methods are not easily defined due to the uncontrollable particle size and size distribution. This study was aimed to synthesize uniform PLA and PLGA microspheres using a phenol formaldehyde resin-based microfluidic chip, which has the advantage of being solvent-resistant, flexible, and is readily disassembled for cleaning. The proposed chip can rapidly fabricate reproducible PLA and PLGA microspheres. Uniform emulsion droplets can be achieved by hydrodynamic flow focusing. After solvent evaporation, the free-flowing PLA and PLGA microspheres have a high level of morphological uniformity and size, allowing for a clear comparison of material effects. The results indicate that the sizes of the PLA and PLGA microspheres for the various flow rates of dispersed/continuous phases are very similar. The PLA/PLGA materials do not have a significant effect on particle size, but the particle surface indicates a different morphology. The result of the cytotoxicity evaluation shows no difference between PLA and PLGA and ensures the biocompatibility of both prepared PLA and PLGA microspheres for biomedical and pharmaceutical applications in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.