Abstract

The search of compounds with CxNy composition holds great promise for creating materials which would rival diamond in hardness due to the very strong covalent C–N bond. Early theoretical and experimental works on CxNy compounds were based on the hypothetical structural similarity of predicted C3N4 phases with known binary A3B4 structural types; however, the synthesis of C3N4 other than g-C3N4 remains elusive. Here, we explore an “elemental synthesis” at high pressures and temperatures in which the compositional limitations due to the use of precursors in the early works are substantially lifted. Using in situ synchrotron X-ray diffraction and Raman spectroscopy, we demonstrate the synthesis of a highly incompressible Pnnm CN compound (x = y = 1) with sp3-hybridized carbon above 55 GPa and 7000 K. This result is supported by first-principles evolutionary search, which finds that CN is the most stable compound above 14 GPa. On pressure release below 6 GPa, the synthesized CN compound amorphizes, maintaining...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.