Abstract

Twisted intercalating nucleic acids (TINA) possessing acridine derivatives have been synthesized via the postsynthetic modifications of oligonucleotides possessing insertions of (R)-1-O-(4-iodobenzyl)glycerol (8) or (R)-1-O-(4-ethynylbenzyl)glycerol (9) at the 5'-end or in the middle as a bulge. In the first postsynthetic step, oligonucleotides 8 and 9 on the CPG support were treated with a Sonogashira coupling reaction mixture containing 9-chloro-2-ethynylacridine or 9-chloro-2-iodoacridine, respectively. After the postsynthetic step, treatment of the oligonucleotides with 32% aq ammonia or 50% ethanolic solution of tris(2-aminoethyl)amine led to the substitution of chloride on acridine concurrent with deprotection of the bases and cleavage of the oligonucleotides from CPG. Molecular modeling of the parallel triplex with a bulged insertion of the monomer (R)-3-O-[4-(9-aminoacridin-2-ylethynyl)benzyl]glycerol in the triplex-forming oligonucleotide (TFO) showed that the acridine moiety was stacking between the bases of the duplex, while phenyl was placed between the bases of the TFO. Thermal denaturation studies and fluorescence properties of TINA-acridine oligonucleotide duplexes and triplexes are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.