Abstract
A layered quaternary uranium-containing oxide, Cs2Mn3U6O22, was crystallized from a cesium chloride flux. The crystal structure was determined to consist of α-U3O8 topological layers that are separated by alternating cesium and manganese layers. This ordered arrangement creates a separation between manganese layers of 13 Å, leading to complex low-dimensional magnetic properties. The compound crystallizes in a new structure type in the monoclinic space group, C2/m, with a = 6.8730(10) Å, b = 11.7717(17) Å, c = 13.374(2) Å, and β = 99.673(5)°. The magnetic properties were measured and analyzed by first-principles density functional theory calculations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.