Abstract
Single-phase Si1−x−yGexSny alloys with random diamond cubic structures are created on Si(100) via ultrahigh vacuum chemical vapor deposition reactions of SnD4 with SiH3GeH3 at 350 °C. Commensurate heteroepitaxy is facilitated by Ge1−xSnx buffer layers, which act as templates that can conform structurally and absorb the differential strain imposed by the more rigid Si and Si–Ge–Sn materials. The crystal structure, elemental distribution and morphological properties of the Si1−x−yGexSny/Ge1−xSnx heterostructures are characterized by high-resolution electron microscopy, including electron energy loss nanospectroscopy, x-ray diffraction (rocking curves) and atomic force microscopy. These techniques demonstrate growth of perfectly epitaxial, uniform and highly aligned layers with atomically smooth surfaces and monocrystalline structures that have lattice constants close to that of Ge. Rutherford backscattering ion channeling shows that the constituent elements occupy random substitutional sites in the same average diamond cubic lattice and the Raman shifts are consistent with the lattice expansion produced by the Sn incorporation into SiGe tetrahedral sites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.