Abstract
ABSTRACTTelechelic anthraquinone‐functionalized polybutadiene (AQ‐PB‐AQ) was synthesized by ring opening metathesis polymerization to achieve homogeneous dispersion of AQ groups in the polymer matrix. It was observed that the AQ end groups act as a sensitizing group resulting in photo‐induced crosslinking and oxidation reaction at the olefin groups in the PB. The process was confirmed by comparing the polymer's mass loss and Fourier transform infrared (FTIR) spectra with those of telechelic diacetoxy‐functionalized PB (AcO‐PB‐OAc) which did not show any difference before and after ultraviolet irradiation. Homogeneity of the AQ groups in PB matrix results in rapid crosslinking of PB in a short period of time (<4 min) while a simple blend of AQ methyl ester in AcO‐PB‐OAc matrix did not show such behavior. Photo‐oxidative reaction has concurrently occurred during the crosslinking reaction. Generation of OH, OOH, and carbonyl groups in the matrix during the photo‐oxidation was verified by FTIR, elemental analysis, and water contact angle measurements. A plausible mechanism for the process was proposed in which the photo‐sensitized AQ groups abstract hydrogen from the PB chain to yield reactive radical species, initiating oxidative crosslinking, and degradation of PB or reduction of AQ to hydroanthraquinone species. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018, 56, 1249–1258
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Polymer Science Part A: Polymer Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.