Abstract
A silver powder of submicron size was produced from the aqueous solutions of its compounds. The silver compounds tried out were silver nitrate and silver oxide, and the reducing agents employed were dimethyl formamide (DMF), hydrazine hydrate, and sodium azide. The solvent mediums were distilled water for the reductions with DMF and sodium azide, and a 2:1 (by volume) mixture of distilled water and ethanol for the reductions with hydrazine hydrate. Of the three reductants, hydrazine hydrate (N2H4·H2O) alone was successful in reducing both the silver compounds to a submicron (<500 nm) metallic silver powder, as revealed by X-ray diffraction (XRD) studies and scanning electron microscopy (SEM) analyses. Additionally, the thermodynamic equilibrium of the system AgNO3-N2H4·H2O in the water–ethanol mixture (2:1) was studied at 298 K; the equilibrium constant data so generated was found to compare very well with those derived from the established data of enthalpies and free energies of formation, and half-cell potentials. The following activity coefficient (Raoultian)–composition relationship for hydrazine hydrate in its dilute solution in water (plus ethanol) at 298 K is proposed: $$ \ln (\gamma_{{{\text{N}_2\text{H}_4}}{\text{.H}_2\text{O}}} ) = 1862( \pm 371) - 2055( \pm 424)(1 - X_{{{\text{N}_2\text{H}_4 \cdot \text{H}_2\text{O}}}} )^{2} $$
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.