Abstract

Highly luminescent ZnS quantum dots (QDs) and their Be2+ and Mg2+ derivatives having nominal compositions Zn1−xBexS and Zn1−xMgxS (where x=0.0–0.6 and Δx=0.1) have been synthesized using the co-precipitation technique. The synthesized QDs are stable for a period of up to 7 months. They have a cubic closed packed (zinc blende) structure and average particle size of 2–3nm as measured by TEM, XRD and UV–vis spectral analysis. Incorporation of Be2+ and Mg2+ into the ZnS lattice has shown noteworthy effects on the intensity of defect-states emission that enhances the luminescence intensity of the QDs. The absorption bands in the visible spectral range for ions of Be and Mg elements are observed to overlap with the fluorescence transitions of ZnS QDs. These highly luminescent and stable QDs could be utilized for the development of new quantum dot-based sensors, light emitting diodes, phosphor and coating for long term applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.