Abstract
A transition-metal-free postmodification of the Groebke-Blackburn-Bienaymé (GBB) reaction for the synthesis of spiro[chromene-imidazo[1,2-a]pyridin]-3'-imine was discovered. The unusual transformation represents the first example of activation and the reaction of the imidazole carbon atom. In this postcondensational modification, KOt-Bu acts as a base, which, after the isomerization of an alkyne moiety to allene, causes the next unique nucleophilic reaction of the imidazole carbon atom that results in spirocyclic structures. The proposed reaction mechanism was confirmed based on the DFT calculations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.