Abstract

Herein, we report the bimetallic (Sn,Zn)(O,S) oxysulfide nanocatalyst with a facile method. The Sn-based catalyst with the addition of Zn was synthesized with the proportions of 0, 20, 30 and 50% of Zn to Sn precursors for preparation. The catalysts were characterized by XRD, TEM, SEM XPS, and UV–vis instruments. The nanocatalysts were also tested for the detoxification of Cr+6. The Sn-20 catalyst with 20 M percent of Zn(Ac)2·2H2O showed an excellent performance for the induced photocatalytic reduction of Cr+6 under visible light irradiation at room temperature. The complete reduction of Cr+6 was achieved within 80 min by Sn-20 catalyst. However, 85.6, 97, and 94% of Cr+6 reductions were achieved within 80 min under visible light illumination by Sn-0, Sn-30, and Sn-50 catalysts, respectively. Hence, the bimetallic (Sn,Zn)(O,S) oxysulfide nanocatalyst will be a candidate and highly potential material for the detoxification of Cr(VI)-containing polluted water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.