Abstract

Single crystalline Sn doped In(2)O(3) (ITO) NWs (nanowires) were synthesized via an Au-catalyzed VLS (vapor-liquid-solid) method at 600 °C. The different sizes (~20, ~40, ~80 nm) of the Au NPs (nanoparticles) provided the controllable diameters for ITO NWs during growth. Phase and microstructures confirmed by high-resolution transmission electron microscope images (HRTEM) and X-ray diffraction (XRD) spectra indicated that the phase of In(2)O(3) NWs had a growth direction of [100]. X-ray photoelectron spectroscopy (XPS) was employed to obtain the chemical compositions of the ITO NWs as well as the ratio of Sn/In and oxygen concentrations. The findings indicated that low resistivity was found for ITO NWs with smaller diameters due to higher concentrations of oxygen vacancies and less incorporation of Sn atoms inside the NWs. The resistivity of NWs increases with increasing diameter due to more Sn atoms being incorporated into the NW and their reduction of the amount of oxygen vacancies. Low resistivity NWs could be achieved again due to excess Sn atoms doped into the large diameter NWs. Therefore, by optimizing the well-controlled growth of the NW diameter and interface states, we are able to tune the electrical properties of Sn-doped ITO NWs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.