Abstract
We report an approach to the rapid, one-step, preparation of a variety of wide-bandgap silicon carbide/graphene nanosheet (SiC/GNSs) composites by using a high-density helicon wave plasma (HWP) source. The microstructure and morphology of the SiC/GNSs are characterized by using scanning electron microscopy (SEM), Raman spectroscopy, x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and fluorescence (PL). The nucleation mechanism and the growth model are discussed. The existence of SiC and graphene structure are confirmed by XRD and Raman spectra. The electron excitation temperature is calculated by the intensity ratio method of optical emission spectroscopy. The main peak in the PL test is observed at 420 nm, with a corresponding bandgap of 2.95 eV that indicates the potential for broad application in blue light emission and ultraviolet light emission, field electron emission, and display devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.