Abstract

Existing studies have analyzed the spatio-temporal patterns of air pollutants by combining ground and satellite measurements, primarily for cross-validation purposes. However, the unique characteristics and discrepancies between satellite and ground measurements have rarely been leveraged to understand pollution patterns and identify air pollution sources. To our best knowledge, this study is the first to utilize these discrepancies to holistically analyze the spatial and temporal patterns and investigate local biomass-burning effects on the five typical air pollutants: particulate matter (PM2.5)/aerosol optical depth (AOD), carbon monoxide (CO), nitrogen dioxide (NO2), sulphur dioxide (SO2), and ozone (O3). Guangdong (GD) province was selected as a case study due to its complex air pollution sources and patterns. Ground-based analysis from 2015 to 2023 shows significant decreases in PM2.5, CO, NO2, and SO2, and a significant increase in O3 in urban areas, indicating the efficacy of stringent air pollution control policies. However, satellite analysis shows significant downtrend only in AOD, while the trends of other pollutants are almost negligible, which are likely to be evidence of industrial migration. Both measurements exhibit regular seasonal patterns for all air pollutants. In-depth time-series comparisons between ground and satellite data reveal seasonal consistency for NO2 but noticeable discrepancies for both AOD and CO, which could be attributed to urban-rural differences and local versus transported pollution sources. Spatially, AOD and NO2 exhibits the most significant regional discrepancies, followed by SO2 and CO, with higher values observed over Pearl River Delta (PRD) compared to non-PRD regions. O3 is more evenly distributed, showing more pronounced seasonal variations than regional differences. The synergetic use of satellite and ground measurements collectively verifies the significant local biomass-burning effects on the five pollutants. These findings can aid in developing more targeted air pollution control policies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.