Abstract

Water pollution caused by Hg(II) exerts hazardous effect to environmental safety and human health. Herein, a family of salicylaldehyde tailored poly(amidoamine) (PAMAM) dendrimers/chitosan composites (G0-S/CTS, G1-S/CTS, and G2-S/CTS) were prepared and used for the removal of Hg(II) from water solution. The adsorption performance of the as-prepared composites for Hg(II) was thoroughly demonstrated by determining various influencing factors. G0-S/CTS, G1-S/CTS and G2-S/CTS exhibited competitive adsorption capacity and good adsorption selective property for Hg(II). The maximum adsorption capacity of G0-S/CTS, G1-S/CTS and G2-S/CTS for Hg(II) were 1.86, 2.18 and 4.47 mmol‧g−1, respectively. The adsorption for Hg(II) could be enhanced by raising initial Hg(II) concentration and temperature. The adsorption process was dominated by film diffusion processes with monolayer adsorption behavior. The functional groups of NH2, CONH, CN, OH, CO and CN were mainly responsible for the adsorption of Hg(II). G0-S/CTS, G1-S/CTS and G2-S/CTS displayed good regeneration property and the regenerate rate maintained 95.00 % after five adsorption-desorption cycles. The as-prepared adsorbents could be potentially used for the efficient removal of Hg(II) from aqueous solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.