Abstract

PtAu bimetallic nanoparticles (NPs) were successfully synthesized on graphene sheets-multi walled carbon nanotubes (G-CNTs) hybrid nanomaterials via a simple one-step chemical co-reduction method in ethylene glycol (EG)–water system. The nanocomposites (PtAu/G-CNTs) were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Then a sensitive nonenzymatic hydrogen peroxide (H2O2) sensor was fabricated based on PtAu/G-CNTs nanocomposites modified glassy carbon electrode (GCE). The results of electrochemical experiments demonstrated that the sensor exhibited excellent electrocatalytic activity to the reduction of H2O2. The sensor displayed a fast amperometric response time of less than 4s with linear detection range from 2.0 to 8561μM and a relatively low detection limit of 0.6μM (S/N=3). In addition, the sensor also showed good selectivity for H2O2 detection, long-term stability and reproducibility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.