Abstract

The porous carbon-doped g-C3N4 nanosheets photocatalysts (NSs-APAM) were synthesized using anionic polyacrylamide (APAM) as the intercalator and carbon source via the thermal treatment method. The as-prepared samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FT-IR), nitrogen adsorption, X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance absorption spectra (UV-DRS) and photoluminescence spectroscopy (PL). The results indicate that the APAM can effectively induce the formation of high-quality nanosheets (NSs) with narrowed bandgap. The specific surface area of NSs-APAM is 118.6m2/g, which is 5-fold larger than bulk g-C3N4. The carbon doping could narrow the bandgap, from 2.75eV of g-C3N4 NSs without carbon doping (NSs-Water) to 2.41eV of NSs-APAM. The two-dimensional NSs structure facilitates the charge separation by shortening the diffusion distance to the surface of photocatalysts. The synergic effects of the carbon doping and unique structural properties contributed to the superior photocatalytic activity of NSs-APAM with 95% degradation rate towards X–3B after 30min visible-light irradiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.