Abstract

AbstractThe feasibility of zinc oxide‐catalyzed esterification of natural phytosterols with oleic acid was investigated well by a chemical process. The influences of various reaction parameters were evaluated. Basic solid zinc oxide is the most desirable catalyst due to its high selectivity (more than 90%), reusability, activity and less corrosivity, whereas sterol selectivity with other catalysts, such as H2SO4, NaHSO4 and NaOMe, did not exceed 80%. Further results showed that during zinc oxide‐catalyzed synthesis, the nature of the acyl donor was of paramount importance with direct esterification with fatty acids, which gives better results with higher conversion rate selectivity and more mild reaction conditions than transesterification with methyl esters. The substrate molar ratio of 2:1 (oleic acid/phytosterol) was optimal. Other parameters such as optimal catalyst load (0.5%) and temperature (170 °C) showed a maximum production of steryl esters close to 98% after 8 h. It was also found that the amount of trans fatty acid formed in esterification was low, and the trans fatty acid content (%) in the phytosterol oleate ester fraction (3.26%) was much lower than that in free oleic oil (7.35%), which suggested that fatty acids in esters were more stable than free fatty acids regarding the combination with sterol. Immobilized ZnO could be a promising catalyst for replacing homogeneous and corrosive catalysts for esterification reactions of sterol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.