Abstract

During the course of an investigation of targeted inhibition of DNA polymerase beta (pol β) lyase activity using small molecules, we observed the formation of an aldimine between (2-formyl)phenylphosphonic acid (2FPP) and butylamine under basic aqueous conditions; complete deprotonation of the phosphonate group was required to stabilize the imine product. Results of computational docking studies suggested that the reaction of Lys-72 on the lyase active site with an aldehyde group could be facilitated by a proximal phosphonate, not only because of the phosphonate’s ability to mimic phosphate interacting with the DNA binding site, but also because of its ability to shield the imine against hydrolysis. Novel pol β lyase inhibitors were thus prepared using a 2FPP analogue with an amine linker; P-C bond formation in synthesis of this intermediate was possible with an unprotected aldehyde using palladium-catalyzed, microwave-assisted Michaelis–Arbuzov chemistry. These compounds, and structurally related derivatives lacking the aldehyde or phosphonate, were evaluated in an assay for pol β to assess their potential for inhibition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.