Abstract

Although fullerene derivatives (e.g. PC61BM/PC71BM) are being widely used as electron acceptors in organic solar cells (OSCs), their obvious drawbacks, such as the high cost, poor absorption, limited energy levels tunability and morphological instability, have become the bottlenecks to hinder the further advancement of OSCs. Therefore, the exploration of non-fullerene electron acceptors is motivated in recent years, and the efficiencies of fullerene-free OSCs have been boosted over 13%. In this presentation, I will focus on the molecular design for highly efficient and thermally stable small molecule electron acceptors based on fused diketopyrrolopyrrole (DPP) and perylene diimide (PDI) building blocks. A new strategy of unfused-ring core is put forward to synthesize thenovel electron acceptors for OSC applications. The highly efficient and thermally stable non-fullerene organic solar cells over 11% have been fabricated by carefully designing the non-fullerene acceptors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.