Abstract

AbstractThis study presents a fabrication and electrochemical properties of nickel ferrite/graphene nanocomposite as electrodes material for supercapacitor application. The as‐prepared electrode was characterized using X‐ray diffraction, scanning electron microscopy, transmission electron microscopy and X‐ray photoelectron spectroscopy. The electrochemical properties were measured using cyclic voltammetry, galvanostatic charging/discharging methods and electrochemical impedance spectroscopy. Graphene nanosheets play an important role of governing the morphology of the electrode material and thereby enhancing the electrochemical performance of the composite electrode. The specific capacitance of 207 F/g is obtained for nickel ferrite/graphene nanocomposite, which is almost 4 times larger than pure nickel ferrite. The nanocomposite showed a stable capacitance of 95% after 1000 cycles in 1 M Na2SO4 electrolyte. Electrochemical impedance spectroscopy results indicate that graphene nanosheets reduced the charge transfer resistance on the composite electrode. The obtained results show that the nanocomposite has a great potential to be used in supercapacitor with good electrochemical performance and longer cycle stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.