Abstract

The increasing concern for sustainable materials and waste management has led to innovative approaches in material science. This study explores the potential benefit of aggregate waste in the production of aluminum composites practicing powder metallurgy techniques. The aim is to investigate the feasibility of incorporating bone material into aluminium matrices to enhance the composite’s mechanical properties. The research involves several key steps. Firstly, waste bone material is collected and processed to obtain a fine powder suitable for powder metallurgy. Various techniques such as grinding, milling, or pulverization are employed to achieve the desired particle size distribution. Next, the bone powder is mixed with aluminium powder in predetermined ratios to create composite blends. The composite blends are then subjected to compaction using powder metallurgy techniques, including cold pressing and sintering. The compaction process aims to consolidate the powders and facilitate the formation of a solid composite structure. The aluminum composites mechanical characteristics are then assessed. The effects of incorporating bone material are assessed using tests on tensile strength, ductility, hardness, and other relevant mechanical properties. Comparative analysis is performed between the composites with bone material and traditional aluminium composites to assess any improvements or changes in performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.