Abstract
N-doped graphene/SnS composite as high-performance anode materials has been synthesized by a simultaneous solvothermal method using ethylene glycol as solvent. The morphology, structure, and electrochemical performance of N-doped graphene/SnS composite were investigated by transmission electron microscope (TEM), X-ray diffraction (XRD), Raman spectra, Fourier transform infrared (FTIR) spectra, X-ray photoelectron spectroscopy (XPS), and electrochemical measurements. The SnS nanoparticles with sizes of 3–5 nm uniformly distribute on the N-doped graphene matrix. The N-doped graphene/SnS composite exhibits a relatively high reversible capacity and good cycling stability as anode materials for lithium ion batteries. The good electrochemical performance can be due to that the N-doped graphene as electron conductor improves the electronic conductivity of composite and elastic matrix accommodates the large volume changes of SnS during the cycles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.