Abstract

Mg3Si2O5(OH)4-Ni3Si2O5(OH)4 nanotubes with the chrysotile structure and MgO : NiO molar ratios of 1 : 2 and 2 : 1 are synthesized by hydrothermal reactions at temperatures from 250 to 450°C and pressures from 30 to 100 MPa. The reaction path and kinetics, as well as the dimensions and morphology of the resulting nanotubes, are shown to depend on the nature of the starting reagents, chemical composition of the reaction system, and hydrothermal synthesis conditions. At higher nickel concentrations in the hydrous silicates, nanotube formation requires higher temperatures, longer hydrothermal treatment times, and higher NaOH concentrations in the reaction system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.