Abstract

In an attempt to synthesize nanosized (Li0.5xFe0.5xZn1−x)Fe2O4 (0⩽x⩽1) particles with high magnetic saturation and low coercivity, the energetic ball milling technique was employed. LiCO3, α-Fe2O3, and ZnO powders were used as starting materials. The ball milled, partially crystallized lithium zinc ferrite starts to crystallize at about 600 °C. This is much lower than the temperature of 1000 °C, which is used in conventional methods. Particle size of lithium zinc ferrite was in the range of 20 to 50 nm. Regardless of the annealing temperature, the saturation magnetization increases with increasing x and reaches the maximum (about 80 emu/g) at x=0.7 [(Li0.35Fe0.35Zn0.3)Fe2O4], followed by a decrease to 60 emu/g for x=1 [(Li0.5Fe0.5)Fe2O4]. On the other hand, the coercivity of x=0.7 composition decreases with increasing annealing temperatures. Saturation magnetization and low coercivity for x=0.7 annealed at various temperatures are discussed in terms of site occupation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.