Abstract
Clostridioides difficile is a spore-forming human pathogen responsible for significant morbidity and mortality. Infections by this pathogen ensue dysbiosis of the intestinal tract, which lead to germination of the spores. The process of spore formation requires a transition for the cell-wall peptidoglycan of the vegetative C. difficile to that of spores, which entails the formation of muramyl-δ-lactam. We describe a set of reactions for three recombinant C. difficile proteins, GerS, CwlD and PdaA1, with the use of four synthetic peptidoglycan analogs. CwlD and PdaA1 excise the peptidoglycan stem peptide and the acetyl moiety of N-acetyl muramate, respectively. The reaction of CwlD is accelerated in the presence of GerS. With the use of a suitable substrate, we document that PdaA1 catalyzes a novel zinc-dependent transamidation/transpeptidation reaction, an unusual reaction that requires excision of the stem peptide as a pre-requisite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chembiochem : a European journal of chemical biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.