Abstract

Films of linear and branched oligomer wires of Fe(tpy)2 (tpy = 2,2':6',2''-terpyridine) were constructed on a gold-electrode surface by the interfacial stepwise coordination method, in which a surface-anchoring ligand, (tpy-C6H4N=NC6H4-S)2 (1), two bridging ligands, 1,4-(tpy)2C6H4 (3) and 1,3,5-(C[triple bond]C-tpy)3C6H3 (4), and metal ions were used. The quantitative complexation of the ligands and Fe(II) ions was monitored by electrochemical measurements in up to eight complexation cycles for linear oligomers of 3 and in up to four cycles for branched oligomers of 4. STM observation of branched oligomers at low surface coverage showed an even distribution of nanodots of uniform size and shape, which suggests the quantitative formation of dendritic structures. The electron-transport mechanism and kinetics for the redox reaction of the films of linear and branched oligomer wires were analyzed by potential-step chronoamperometry (PSCA). The unique current-versus-time behavior observed under all conditions indicates that electron conduction occurs not by diffusional motion but by successive electron hopping between neighboring redox sites within a molecular wire. Redox conduction in a single molecular wire in a redox-polymer film has not been reported previously. The analysis provided the rate constant for electron transfer between the electrode and the nearest redox-complex moiety, k1 (s(-1)), as well as that for intrawire electron transfer between neighboring redox-complex moieties, k2 (cm2 mol(-1) s(-1)). The strong effect of the electrolyte concentration on both k1 and k2 indicates that the counterion motion limits the electron-hopping rate at lower electrolyte concentrations. Analysis of the dependence of k1 and k2 on the potential gave intrinsic kinetic parameters without overpotential effects: (k1(0) = 110 s(-1), k2(0) = 2.6x10(12) cm2 mol(-1) s(-1) for [n Fe3], and k1(0) = 100 s(-1), k2(0) = 4.1x10(11) cm2 mol(-1) s(-1) for [n Fe4] (n = number of complexation cycles).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.